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Abstract—Supporting iteration and/or recursion for advanced
big data analytics requires reexamination of classical algorithms
on modern computing environments. Several recent studies have
focused on the implementation of transitive closure in multi-node
clusters. Algorithms that deliver optimal performance on multi-
node clusters are hardly optimal on multicore machines. We
present an experimental study on finding efficient main memory
recursive query evaluation algorithms on modern multi-core ma-
chines. We review SEMINAIVE, SMART and a pair of single-source
closure (SSC) algorithms. We also propose a new hybrid SSC
algorithm, named SSC12, which combines two previously known
SSC algorithms. We implement these algorithms on a multicore
shared memory machine, and compare their memory utilization,
speed and scalability on synthetic and real-life datasets. Our
experiments show that, on multicore machines, the surprisingly
simple SSC12 is the only transitive-closure algorithm that is
consistently fast and memory-efficient on all test graphs.

I. INTRODUCTION

The growing importance of applications using big data an-
alytics is promoting a burgeoning research interest in parallel
systems, algorithms, and software needed to achieve scalable
performance on such systems.

As we have moved from the simple applications originally
supported by MapReduce to more advanced applications re-
quiring iteration and/or recursion, it is now clear that classical
algorithms designed for traditional architectures should be re-
evaluated and re-designed for these new massively parallel sys-
tems. For instance, several recent studies [1]–[3] have focused
on the implementation of transitive closure (TC) in multi-node
clusters, and Afrati et al. [1] showed that a relatively obscure
algorithm called SMART [4], [5] outperforms other algorithms
on this problem.

However, algorithms that deliver optimal performance on
multi-node clusters are hardly optimal on multicore machines,
and vice versa: in the rest of the paper we demonstrate this
point by an in-depth experimental study of various transitive
closure algorithms on multicore machines. Thus, we will first
show that many other algorithms are significantly better than
SMART, and then propose a hybrid algorithm that achieves the
best performance by combining two existing algorithms.

The novel performance findings presented in this paper are
hardly surprising in view of the fact that the most previous
studies date back to the late 80’s and early 90’s [6]–[9], and
there has been much progress in multicore systems since then.
Moreover, we assume here that all our data resides in main
memory, whereas past studies on recursive query evaluation

[4]–[17] often assumed a database-oriented environment with
data residing on secondary storage, whereby query evaluation
algorithms were designed to reduce I/O costs rather than in-
memory evaluation costs.

The main short-term benefits of the findings presented in
this paper are that programmers of multicore systems will
be able to use these results by selecting the best algorithm
for their transitive-closure-like applications. But our longer-
term objective is to enable the compiler to select the best
implementation for the the systems at hand, or the most
cost-effective configuration when many choices are available
as it is often the case in cloud-computing environments.
This ambitious objective represents a natural extension of the
query optimization approach that has made possible efficient
and parallel implementations of declarative database queries.
Keeping with this database motif, we will express many
recursive queries using Datalog. Datalog entails a concise and
elegant expression of these queries; also Datalog’s compilation
technology combines the well-known query optimization tech-
niques of DBMS with those of recursive programs which are
transformed into equivalent ones optimized for the particular
query at hand (i.e., techniques such as left-recursion to right-
recursion transformations and magic-sets), and then mapped
into equivalent iterative ones (e.g., via the seminaive fixpoint
computation [18]).

Therefore in this paper, we will express several TC algo-
rithms using Datalog, and then evaluate their performance on
massively parallel multicore systems. A discussion of trans-
formations between Datalog programs expressing the various
algorithms would take us well beyond our space limitations
and is left for later papers. The focus of this paper is instead
on efficient implementations. We begin with a study of the TC
query evaluation using the seminaive fixpoint computation (de-
noted by SEMINAIVE) and then SMART. Then we study SSC
algorithms that decompose the TC computation into disjoint
computations, each computing the closure from a single vertex
using linear recursive rules. The two SSC algorithms are SSC1
based on SEMINAIVE, and SSC2 based on the breadth-first
search. We also propose a new hybrid SSC algorithm, called
SSC12, which integrates the merits of SSC1 and SSC2. We
perform an experimental evaluation of our implementations
focusing on memory utilization, speed and scalability.

A first contribution of this paper is an extensive experimen-
tal comparative evaluation of these parallel algorithms. We
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show that the little known SSC algorithms outperform other
well-studied algorithms in terms of memory utilization and
speed. We also identify the crux that prevents each algorith-
m from scaling linearly. All these algorithms are memory-
bandwidth bound, and SEMINAIVE is also bound by control
time. Although recursive query evaluation benefits from the
current trend towards massive parallel multicore systems, this
negative result suggests that it will be difficult to continue
benefiting from this trend even if the number of cores per
CPU keeps growing.

The second contribution is the proposal of a robust main-
memory recursive query evaluation algorithm. The surprising-
ly simple SSC12 proposed in this paper is the only algorithm
that consistently performs well on all test graphs for the
TC query evaluation. This simple and efficient algorithm is
also applicable to many other recursive queries that express
computation similar to TC, including shortest path and similar
algorithms expressed using monotonic aggregates [19].

The rest of our paper is organized as follows. Section II
describes all compared algorithms, and Section III presents our
parallel implementations. Section IV reports the experimental
setup and results. Section V discusses related work. The paper
concludes in Section VI.

II. TRANSITIVE CLOSURE ALGORITHMS

A. Linear TC Rules and Seminaive Evaluation

Let arc(X, Y) be a relation that represents the edges of a
directed graph, i.e., there is a directed edge from x to y if and
only if arc(x, y) is a fact. The transitive closure (TC) of arc
is a relation tc(X, Y) such that tc contains all pairs (X, Y) that
X can reach Y via a path in the graph. A linear version of TC
is given by rules in Eq (1).

tc(X, X) <- arc(X, _).

tc(X, Y) <- tc(X, Z), arc(Z, Y). (1)

The first rule is an exit rule1. It adds a tuple (X, X) to tc for
each source vertex X. The second rule is a left-linear recursive
rule. For every tuple (X, Z) that is already in tc, it expands the
path represented by (X, Z) with one more edge, then adds the
new tuple to tc. The relation tc can be computed by iteratively
performing this operation until no more new tuples can be
added to it. This procedure is called the naive evaluation. This
simple procedure may involve redundant derivations since the
same path may be generated in several iterations.

SEMINAIVE Algorithm: Seminaive evaluation [18] is an
optimized variant of naive evaluation. The idea is to use only
the new tuples derived in the previous iteration to derive the
tuples in the current iteration. The pseudocode is shown in
Fig. 1.

SEMINAIVE evaluates as follows. First, all source vertices
in arc are added into tc and ∆tc, i.e., tc and ∆tc contain
tuples for all paths of length 0. Then, in the i-th iteration,

1A more common way to write the exit rule is tc(X, Y) <- arc(X, Y).
The exit rule here ensures that tc always contains the tuple (X, X) for each
source vertex X.

the initial ∆tc contains tuples for paths of length i− 1. δtc
contains tuples corresponding to paths of length i derived from
extending paths of length i−1 with one more edge. However,
some tuples may already be present in tc. It is not necessary
to do derivations on these tuples since it will only derive tuples
that are already derived. So the new ∆tc excludes these tuples
that are already in tc. All tuples in the new ∆tc are merged
into tc. The algorithm iterates until ∆tc becomes empty.

1: tc := {(X, X)|arc(X, _)}, ∆tc := {(X, X)|arc(X, _)}
2: repeat
3: δtc := πX,Y

(
∆tc(X, Z) ./ arc(Z, Y)

)
4: ∆tc := δtc− tc
5: tc := tc ∪∆tc
6: until ∆tc = ∅

Fig. 1. SEMINAIVE algorithm for computing tc.

The number of iterations required by SEMINAIVE equals the
length of the longest simple path in the graph. The maximal
value is n − 1 for a graph of n vertices. Thus, the algorithm
could take O(n) iterations to terminate.

B. Non-Linear TC Rules and the SMART Algorithm

The number of iterations required by SEMINAIVE is large
when the length of the longest simple path is very long.
However the use of quadratic recursive rules, as shown below,
doubles the length of the paths at each iteration thus reducing
the number of iterations required to their logarithm.

tc′(X, X) <- arc(X, _).

tc′(X, Y) <- arc(X, Y).

tc′(X, Y) <- tc′(X, Z), tc′(Z, Y). (2)

The SMART algorithm [4], [5] optimizes the computation
of these rules by avoiding the generation of the same path
multiple times. The pseudocode for SMART is as follows:

1: tc′ := {(X, X)|arc(X, _)}, δtc′ := arc
2: repeat
3: ∆tc′ := πX,Y

(
δtc′(X, Z) ./ tc′(Z, Y)

)
4: tc′ := tc′ ∪∆tc′

5: δtc′ := πX,Y
(
δtc′(X, Z) ./ δtc′(Z, Y)

)
− tc′

6: until δtc′ = ∅

Fig. 2. SMART algorithm for computing tc′.

At the beginning of iteration i, tc′ contains all tuples
corresponding to paths of length at most 2i−1 − 1, and δtc′

contains all tuples corresponding to paths of length exactly
2i−1 that are not in tc′. This condition holds in the first
iteration as tc′ is set to the set of tuples corresponding to
paths of length 20− 1 = 0 in line 1, and δtc′ is set to the set
of tuples corresponding to paths of length 20 = 1 in line 1.
In line 3, all tuples corresponding to paths of length between
2i−1 and 2i − 1 are derived by joining δtc′ and tc′. These
tuples are merged into tc′ in line 4. Now tc′ contains all
tuples corresponding to paths of at most 2i − 1. In line 5,
δtc′ is joined with itself to derive all tuples corresponding
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to paths of length exactly 2i. Tuples that are already in tc′

are excluded from the new δtc′. So the condition still holds
for iteration i+ 1. The algorithm iterates until δtc′ becomes
empty. In an n-vertex graph, there is no simple paths of length
n. Thus, δtc′ is empty at the end of iteration dlog ne, or the
algorithm terminates in O(log n) iterations.

C. Single-Source Closure Algorithms: SSC1 and SSC2

The previous algorithms compute tuples from different
source vertices at the same time, whereas a more parsimonious
usage of memory can be achieved by computing the paths that
originate from one source vertex one at the time [15].

In Datalog, we can express the optimization by replacing
each goal tc(X, Y) with the one-column predicate tc′′ — for
each value x that satisfies arc(X, _):

tc′′(x).

tc′′(Y) <- tc′′(Z), arc(Z, Y). (3)

The closure under the operation defined by rules in Eq (3)
contains all vertices reachable from the source vertex x.
We call it a single-source closure (SSC). An SSC algorithm
computes TC by computing the SSC for every source vertex in
the graph. It decomposes the original computation into disjoint
computations based on the source vertex.

The SSC1 Algorithm: A straightforward way to compute
the SSC of a source vertex x is to apply SEMINAIVE to the
rules in Eq (3). The algorithm, named as SSC1, is shown in
Fig. 3. For each vertex Z in ∆tc′′, it finds all the Y that satisfies
arc(Z, Y), and adds Y to δtc′′. All the vertices that are already
in tc′′ are excluded from the new ∆tc′′, and the remaining
vertices are added to tc′′. When the evaluation terminates,
tc′′ contains all the vertices in the SSC of x. We compute the
TC by repeating SSC1 on all source vertices.

1: tc′′ := {x}, ∆tc′′ := {x}
2: repeat
3: δtc′′ := πY

(
∆tc′′(Z) ./ arc(Z, Y)

)
4: ∆tc′′ := δtc′′ − tc′′

5: tc′′ := tc′′ ∪∆tc′′

6: until ∆tc′′ = ∅

Fig. 3. SSC1 algorithm for computing tc′′.

SSC1 performs exactly the same (logical) computation as
SEMINAIVE does. The only difference is the computation is
partitioned based on the source vertex. The effect of this is
similar to hashing. For example, the set difference in line 4 of
Fig. 1 is replaced by many set differences in line 4 of Fig. 3
which is equivalent to a hash-based set difference where the
hash function simply returns the source vertex of a tuple. As
we will see, SSC1 normally outperforms SEMINAIVE which
is slower because of the overhead of hashing and related
operations.

The SSC2 Algorithm: The SSC of x is represented as a
set in SSC1. An alternative representation is a Boolean array
of size n where the i-th element represents whether x can

reach the vertex i in the graph2. This array representation
converts SSC1 to the SSC2 algorithm shown in Fig. 4. The
algorithm essentially performs a breadth-first search starting
from x. d, ∆tc′′ and δtc′′ are three arrays of size n which
are reused throughout the evaluation for all source vertices.
Initially, all elements in d are set to false except d[x]. In each
iteration, ∆tc′′ and δtc′′ contain the vertices derived in the
last iteration and the current iteration, respectively. For each
vertex Z in ∆tc′′, edges starting from Z are explored to derive
new vertices. When a new vertex Y is derived, we check if Y
is already in tc′′ by testing if d[Y] is true. If not, we set d[Y]
to true, and then add Y to δtc′′. The check in line 8 replaces
the set difference in line 4 of Fig. 3, while the operation of
setting d[Y] to true replaces the union in line 5 of Fig. 3.
When the algorithm terminates, the actual SSC is constructed
by collecting all vertices Y where d[Y] is true.

1: set each element in d[] to false
2: d[x] := true, ∆tc′′[0] := x, L := 1
3: repeat
4: l := 0
5: for i := 0 to L− 1 do
6: Z := ∆tc′′[i]
7: for each edge (Z, Y) in arc do
8: if d[Y] = false then
9: d[Y] := true, δtc′′[l] := Y, l := l + 1

10: ∆tc′′ := δtc′′, L := l
11: until L = 0

Fig. 4. SSC2 algorithm for computing tc′′.

The array representation allows SSC2 to replace the set
operations (insert, set difference and union) with array access-
es. This optimization reduces the time of computation (line 2
– 11 in Fig. 4) at the expense of additional time on array
initialization (line 1) which is proportional to n. If n is very
large, but very few edges are explored during the computation,
the time spent on array initialization may be longer than the
computation. In this case, SSC2 is slower than SSC1. On
the other hand, if the algorithm explores many edges during
the computation, the advantage of the array representation
becomes clear, and SSC2 becomes faster than SSC1.

D. An Adaptive Single Source Algorithm: SSC12

The performance of the previous two SSC algorithms varies
on different source vertices. We propose a hybrid SSC algorith-
m, named as SSC12, which is a trade-off between SSC1 and
SSC2. Evaluation starts with SSC1, and converts to SSC2
when the algorithm predicts that the time would be shorter if
it converts to SSC2.

If SSC2 is faster than SSC1 on a source vertex, the optimal
conversion point is the beginning of the evaluation. But the
prediction is difficult without computing the SSC. To control
the conversion of the hybrid algorithm, we use a heuristic
algorithm as shown in Fig. 5. δtc′′ and ∆tc′′ are represented
as sets in SSC1. Assume the cost of set insert and delete

2We assume each vertex is encoded as an integer ranging from 0 to n− 1
in an n-vertex graph.
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SSC1

Start

SSC2

∑
Z∈∆tc′′ |adj(Z)| + |tc′′| > n

α

|tc′′| + |∆tc′′| > n
β

1

Fig. 5. Control algorithm for SSC12 algorithm.

is the same. Let |adj(Z)| be the number of Y that satisfies
arc(Z, Y). The number of set operations performed to compute
δtc′′ and ∆tc′′ are Cδ =

∑
Z∈∆tc′′ |adj(Z)|+|tc′′| and C∆ =

|tc′′| + |∆tc′′|, respectively, which are simple to compute.
The algorithm chooses to convert if Cδ > n/α or C∆ >
n/β, where α and β are parameters that control the timing
of conversion. It degenerates to SSC1 (SSC2) if α = β = 0
(α = β =∞).

A sufficiently small α ensures that the time becomes shorter
if the algorithm chooses to convert since SSC2 is expected to
be faster than SSC1 for a large Cδ . But the algorithm may
have to execute SSC1 for a long time to obtain such a decision.
Thus, the effect of conversion on speedup the computation is
diminished as the time of conversion may be too late. On
the other hand, large α may lead to wrong predictions which
slow down the evaluation. The same dilemma applies to β. We
empirically set α = 1/8 and β = 1/128. We describe how to
tune these two parameters in Section 4.2 of [20]. Details are
omitted here due to space constraints.

III. ALGORITHM IMPLEMENTATION AND MEMORY USAGE

We will next describe in more details the implementa-
tion of these algorithms which we then compare in terms
of memory utilization, speed and scalability. As discussed
in the introduction, the result of this comparison will help
programmers implementing recursive applications, and it is
actually critical for a compiler optimizing the execution of
TC Datalog program on multicore machines. In the previous
section, we have seen how a simple rewriting can be used
to redirect the execution of linear rules from SEMINAIVE to
SSC1, which can in turn be recast as SSC2 and SSC12 (by
the compiler using different memory structures). Rewriting
rules that transform linear recursive rules into non-linear rules
and then these to SEMINAIVE and SMART respectively are
also available — although more complex and thus beyond
the scope of this paper. Thus all these algorithms represent
achievable targets for a parallel Datalog compiler, which will
then select the optimal one for the system at hand. Afrati et al.
[1] have shown that SMART is optimal for multi-node clusters,
and in the rest of the paper we seek to resolve the optimality
question for multicore machines.

A. Main Memory Representation

The different algorithms achieve their best performance
with different representations. Thus SMART performs well
when arc is represented as a collection of tuples, but the
performance of SEMINAIVE and the SSC algorithms improves

significantly when an adjacency list representation is used for
arc. The time required for structuring the input data into an
adjacency list and building an index for it is included in the
total time reported in our experiments (but it is small and only
accounts for less than 2% of the total time).

Adjacency List Index: The operation of deriving new tuples
in SEMINAIVE can be simply implemented as a nested loop
join between ∆tc and arc. But it requires a full scan on arc

for each tuple in ∆tc. Note that arc doesn’t change during
the evaluation. A better strategy is to build an index on arc

so that all tuples with a specific source vertex can be accessed
directly. The index is an adjacency list representation of the
graph represented by arc where each vertex X is associated
with a unordered list adj(X) describing the set of neighbors
of this vertex. It is built by scanning arc twice:

1) The first scan counts how many neighbors each vertex
has. These values are stored in an array of size n.

2) A contiguous memory space is allocated for the adjacency
list. The starting position within the allocated space
for the unordered list associated with each vertex is
determined by computing the prefix-sum of the array
obtained in step 1).

3) During the second scan, the destination vertex of each
tuple is stored in the list associated with the source vertex.

Now, for each tuple (X, Z) in ∆tc, the algorithm retrieves from
the index the list adj(Z) that contains all neighbors of Z. For
each vertex Y ∈ adj(Z), it generates a new tuple (X, Y). There
is no redundant accesses on arc. This index is also used in
SSC1, SSC2 and SSC12.

B. Implementation of SEMINAIVE and SMART

Fig. 1 and Fig. 2 contain three basic relational algebra
operators: join, union and set difference. The join operator in
line 3 of Fig. 1 is implemented as a parallel index nested loop
join. We implemented the remaining operators using hash-
based parallel relational algebra operators. The join operator in
line 3 of Fig. 2 joins two large relations. We implement it using
the radix join algorithm [21]. The algorithm first partitions
both input relations into smaller relations using multi-pass
radix partitioning [22], and then joins each pair of relations
resulted from the partitioning. We implement the union op-
erator and the set difference operator similarly — partition
both input relations and perform the actual operation. Detailed
description of each operator and alternative implementations
of both algorithms are discussed in Section 3.1 and Section
4.5 of [20], respectively.

Our implementations use the Pthreads library. Each (work-
ing) thread is assigned to a unique physical core on a multicore
machine, and performs all the computation on its assigned
core. In addition to the working threads, there is a control
thread that coordinates the computation. In each iteration,
1) the control thread assigns the job to each working thread;
2) all working threads perform the computation; 3) the control
thread allocates some memory, revokes some memory, assigns
the job; 4) each working thread copies the tuples from its
local buffer to its assigned location; 5) the control thread
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decides if the termination condition is satisfied, if not starts
the next iteration. The execution time is divided into three
parts: 1) control time, the time spent by the control thread;
2) computing time, when all working threads perform some
computation; 3) copying time, when each working thread
copies tuples to its assigned location.

C. Implementation of SSC Algorithms

Our implementation of different SSC algorithms uses differ-
ent data structures. In SSC1, we use hash tables to represent
tc′′, ∆tc′′ and δtc′′. In SSC2, we use arrays to represent
d, ∆tc′′ and δtc′′. In SSC12, we use both hash tables and
arrays.

An SSC algorithm can be easily parallelized on a shared
memory machine as follows: 1) add all source vertices into
a queue; 2) each thread removes a vertex from the queue,
and computes the SSC of this vertex; 3) repeat until the
queue is empty. The queue is implemented as an array with
a counter. Each element in the array is a vertex. The initial
value of the counter is zero. A thread gets the index of the
next vertex by calling the gcc atomic memory access function
__sync_fetch_and_add. Calling the function requires an
implicit synchronization between threads that are fetching the
counter value at the same time. But the time spent on this
synchronization is negligible compared to the control time in
SEMINAIVE and SMART.
NUMA Aware Optimization. On non-uniform memory access
(NUMA) hardware, the memory is configured into several
NUMA regions and each region is attached to a unique CPU
as its local memory. A CPU accesses its local memory faster
than non-local memory. If the relation arc is resident on one
CPU’s local memory, the threads running on this CPU access
the relation faster than the threads running on other CPUs.
This unbalanced access speed slows down the computation
when we use multiple threads running on different CPUs. If
the relation fits in one NUMA region, we can duplicate the
relation on each NUMA region such that each thread accesses
the (copy of) relation that is resident on the NUMA region
attached to the CPU the thread is running on. SEMINAIVE,
SSC1, SSC2 and SSC12 adopt this optimization since our
experiments are performed on a NUMA machine. The ad-
jacency list index is duplicated on each NUMA region. We
discuss the impact of this optimization in Section IV-C1.

D. Memory Requirements

The main factors determining memory usage are as follows:

n number of vertices in the graph
m number of edges in the graph
mc number of tuples in the TC
p number of threads used by an algorithm
b number of bits to store a vertex

Now, TABLE I summarises the memory requirement of each
implementation. It is clear to see the advantage of the SSC
algorithms on the memory requirement. They use at most half
(one third) of the memory required by SEMINAIVE (SMART)

TABLE I
MEMORY REQUIREMENTS OF IMPLEMENTATIONS.

Algorithm Memory requirement (bits)
SEMINAIVE ≥ 4bmc + 2bm

SMART > 6bmc

SSC1 ≤ 2bmc + bm+ 6bpn
SSC2 2bmc + bm+ (3b+ 1)pn

SSC12 ≤ 2bmc + bm+ (9b+ 1)pn

if m� mc (i.e., the TC contains much more tuples than arc

does). Moreover, the SSC algorithms do not need to access
the tuples in the TC. If the TC does not fit in the memory,
an SSC algorithm can still executes as long as arc fits in
the memory and the remaining memory is sufficient to hold
the auxiliary data structures used by the algorithm. Instead
of storing a newly derived tuple in the main memory, the
algorithm now appends it to the end of a file on the disk.

IV. EXPERIMENTAL EVALUATION

All experiments are run on a multicore machine with four
AMD Opteron 6376 CPUs and 256GB memory (configured
into 8 NUMA regions). Each CPU has 16 cores organized as
follows: 1) each core has its own 16KB L1 cache; 2) two cores
share a 2MB L2 cache; 3) eight cores share a 6MB L3 cache,
and have direct access to 32GB memory. The operating system
is Ubuntu Linux 12.04 LTS and the compiler is gcc 4.6.3 using
-O3 optimization. Execution time is calculated by taking the
average of five runs of the same experiment3. Execution time
is measured as the number of CPU cycles elapsed from start
to finish for computing TC.

In the rest of this section, we first describe the topology of
the test graphs, and then present the experimental results on
serial and parallel execution of the compared algorithms.

A. Topology of Test Graphs

In our experiments, we encode each vertex in an n-vertex
graph as a random 32-bit integer ranging from 0 to n−1. Each
edge is represented as a pair of 32-bit integers. The edges are
shuffled into a random order and stored in a file. Recall that
the graph has m edges. We say the graph is sparse if m is
much less than n2 (e.g., m = cn or m = cn log n where c is a
small constant). Otherwise, we say it is dense (e.g., m = cn2

or m = cn
3
2 where c is a small constant). The TC is also a

directed graph. Similarly, we say the TC is sparse or dense
based on whether the number of tuples in the TC is much
less than n2 or not. We evaluated the algorithms on synthetic
graphs of four different topologies and four real-life graphs as
shown in TABLE II.
Synthetic Graphs.
1) Tree. We use tree-d to denote a randomly generated tree
of depth d such that the out degree of a non-leaf vertex is a
random number between 2 to 6. It is a sparse directed graph
whose TC is also sparse.

3We are not reporting the maximal/minimum execution time since the
corresponding line and the average line are almost coincident in the figures.
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TABLE II
PARAMETERS OF TEST GRAPHS.

Name Type Vertices Edges TC size
tree-11 tree 71,391 71,390 876,392
tree-17 tree 13,766,856 13,766,855 251,744,564
grid-150 grid 22,801 45,300 131,698,576
grid-250 grid 63,001 125,500 1,000,203,876
sf-100K scale-free 100,002 350,604 96,157,950
gnp-0.001 G(n, p) 10,000 100,185 100,000,000
gnp-0.01 G(n, p) 10,000 999,720 100,000,000
gnp-0.1 G(n, p) 10,000 9,999,550 100,000,000
gnp-0.5 G(n, p) 10,000 49,986,806 100,000,000
patent real-life 3,774,769 16,518,948 5,833,193,395
wiki real-life 1,675,063 2,505,046 8,643,588,110
road real-life 3,598,623 8,778,114 7,719,381,925
stanford real-life 281,904 2,312,497 40,044,147,167

2) Grid. We use grid-d to denote a (d+1)×(d+1) square grid
of (d + 1)2 vertices. It is a sparse directed graph but whose
TC is dense.
3) Scale-free. The degree distribution of a scale-free graph
follows a power law distribution. sf-100K is generated using
the scale-free graph generator in the GraphStream library [23].
Its TC is neither as dense as the TC of a grid, nor as sparse
as the TC of a tree.
4) G(n, p). An n-vertex G(n, p) graph (Erdős-Rényi model)
is generated by connecting vertices randomly such that each
pair of vertices are connected with probability p (the graph
can have self-loops). We use gnp-p to denote such a random
graph of 10,000 vertices with parameter p.
Real World Graphs.
1) patent is the US patent citation graph [24]. Each vertex rep-
resents a patent, and each edge represents a citation between
two patents. The graph is a directed acyclic graph.
2) wiki is a subgraph of the Wikipedia knowledge graph [25]
. Each vertex in the knowledge graph represents an entity in
the Wikipedia. If an entity appears in the infobox of another
entity, there is a directed edge between the two corresponding
vertices. wiki contains 20% of edges and the related vertices
from the knowledge graph.
3) road is the eastern USA road network [26]. Each directed
edge represents a road between two points in the road network.
The graph has a tree structure where the root is a strongly con-
nected component (SCC) consisting of 2141 vertices (about
0.06% of all vertices). All the paths point toward the root.
4) stanford is the Stanford Web graph [27]. Each directed
edge represents a hyperlink between two pages under the
stanford.edu domain in 2002. The largest SCC in the graph
contains about half of the vertices.
Memory Utilization of Algorithms. TABLE III shows the
memory utilization of each algorithm on the test graphs. An
X mark indicates that an algorithm is not applicable to a
graph because the computation requires more memory than
the machine has. The memory utilization is usually higher
when an algorithm uses more threads. But adjusting the
number of threads does not affect whether an algorithm is

applicable to a graph in our experiments. Thus, each value
in the table represents a typical memory utilization of an
algorithm on a test graph (using the optimal number of threads,
cf. Section IV-C2). Two values are reported for each SSC
algorithm — the memory utilization of computing and storing
TC in memory, and the memory utilization of computing TC
in memory while storing it to disk. For graphs that fit in
memory but whose TC cannot fit in memory, the storing-to-
disk option allows an SSC algorithm to compute TC without
loosing the speed of in-memory computing. For example, the
TC of stanford cannot fit in memory, we can still use the
SSC algorithms in the storing-to-disk mode as shown by the
last row of TABLE III. Moreover, when the query only needs
some aggregates on each source vertex, an SSC algorithm can
optimize the evaluation by computing the aggregates on each
SSC without storing the whole TC. However, there is no such
simple optimization for SEMINAIVE and SMART.

TABLE III
MEMORY UTILIZATION OF ALGORITHMS ON TEST GRAPHS (UNIT GB).

SEMINAIVE SMART SSC1 SSC2 SSC12
tree-11 0.06 0.08 0.02/0.02 0.04/0.04 0.02/0.02
tree-17 6.83 8.77 5.57/3.70 8.79/6.91 5.68/3.80
grid-150 3.75 22.39 1.00/0.02 0.99/0.01 1.00/0.03
sf-100K 2.51 21.96 0.76/0.05 0.77/0.06 0.79/0.08
gnp-0.001 10.95 X 0.76/0.02 0.77/0.01 0.79/0.03
gnp-0.01 97.90 X 0.81/0.07 0.79/0.06 0.81/0.07
gnp-0.1 X X 1.24/0.50 1.22/0.49 1.24/0.50
gnp-0.5 X X 3.18/2.44 3.16/2.42 3.18/2.44
grid-250 X X 7.52/0.07 7.48/0.04 7.50/0.05
patent X X 44.99/0.37 45.92/0.85 45.96/0.87
wiki X X 64.76/1.54 65.24/2.45 65.26/2.52
road X X 58.45/0.94 59.50/1.99 58.45/0.94
stanford X X X/0.50 X/0.23 X/0.26

The algorithms can be ordered as follows based on their
memory utilization: SMART > SEMINAIVE > SSC1, SSC2,
SSC12. The SSC algorithms always use the least memory
which is consistent with our analysis in Section III-D. They are
applicable to all test graphs, while SEMINAIVE and SMART are
only applicable to some test graphs. Although the TCs of all
test graphs can fit in memory (except stanford), SEMINAIVE
and SMART are not applicable to some test graphs since the
intermediate result (δtc in Fig. 1 and ∆tc′ in Fig. 2) may
be extremely large before deduplication. Moreover, ∆tc′ is
usually larger than the corresponding δtcs since ∆tc′ in the
i-th iteration equals the union of δtcs from iteration 2i−1 to
2i − 1. Thus, SEMINAIVE is applicable to two more graphs
than SMART.

The SSC algorithms have a significant advantage over
SEMINAIVE and SMART in terms of memory utilization —
the memory utilization of SEMINAIVE and SMART is 1.2x-
120x of SSC12, or 1.8x-1400x if SSC12 uses the storing-to-
disk mode. In the remaining of this section, we compare these
algorithms focusing on speed and scalability. We only show
the result of an algorithm on a test graph if the algorithm is
applicable to the test graph.
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Fig. 6. Serial execution time of algorithms.
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Fig. 7. Speedup of algorithms (w.r.t. the serial execution) using different number of threads.

B. Serial Execution Performance

We first study the serial execution performance of the
compared algorithms. Fig. 6 shows the serial execution time
of each algorithm. The computation of SSC2 on tree-17 did
not finish in one day. We use a value of 1013 in the figure to
indicate this.

Effectiveness of SSC algorithms. Overall, the SSC algorithms
achieve the shortest serial execution time on all the test graphs
reported in Fig. 6: SSC2 is the fastest on grid-150, sf-100K
and gnp-0.001, and SSC12 is the fastest on the remaining
graphs. SSC2 performs poorly on trees (e.g., tree-11 and
tree-17), while SSC1 is much faster than SSC2 on trees. The
hybrid algorithm, SSC12, integrates the efficiency of SSC1 on
trees and the efficiency of the array representation employed
by SSC2 on the remaining graphs. It consistently performs
well on all the test graphs.

Linear Recursion Algorithms. SEMINAIVE and the SSC al-
gorithms are based on linear recursion. Fig. 6 shows that
SEMINAIVE is always slower than SSC1 on all the test graphs,
which is consistent with the analysis in Section II-C. This
result shows the effectiveness of the partitioning by source
vertex optimization employed by SSC1. Algorithm I.1 [7] and
strategy TCr [8] share the same idea with SSC1. But both

compute the tuples from a set of source vertices at the same
time. They are expected to be slower than SSC1 for the same
problem that SEMINAIVE suffers from.
Linear vs. Non-linear Recursion. Fig. 6 shows an empirical
comparison between the non-linear recursion based SMART
algorithm and the linear recursion based algorithms. SMART
is always faster than some linear recursion based algorithms
on the four test graphs that it is applicable, which exhibits
the advantage of smaller number of iterations during the
TC computation. However, the linear recursion based SSC12
algorithm outperforms SMART on all four graphs as it uses
more efficient data structures.

C. Parallel Execution Performance

Now we study the parallel execution performance of the
compared algorithms on the test graphs.

1) Speedup of Algorithms: Fig. 7 shows the speedup of
each algorithm w.r.t. the serial execution. Overall, every algo-
rithm exhibits some speedup as the number of threads increas-
es: SEMINAIVE and SMART show very limited speedup, while
the SSC algorithms achieve almost linear speedup. A general
rule is that the speedup does not increase linearly with the
number of threads, but it becomes progressively less due to
the increased overhead of synchronizing more threads. In the
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Fig. 10. Computing time breakdown of SMART on
grid-150.

extreme cases where the time for synchronization dominates
real computation time, we see the overall computation taking
a longer time when we increase the number of threads — see,
e.g., SEMINAIVE and SMART on tree-11.

We next discuss the speedups of the various algorithms in
detail. We use the result of grid-150 (cf. Fig. 7(c)) as an
example since the same trend is also observed in Fig. 7(d),
7(e) and 7(f).

Speedup of SEMINAIVE. The execution time of SEMINAIVE
is the sum of computing time, control time and copying time
(cf. Section III-B). Fig. 8 shows the execution time breakdown
of SEMINAIVE on grid-150. The bars for copying time are
unnoticeable since copying time accounts for less than 1%
of the execution time. As the number of threads increases
from 1 to 64, control time remains almost unchanged, while
computing time decreases by about two thirds. Control time
accounts for more than half of the execution time when 64
threads are used. Although there is speedup in computing
time, the unchanged control time limits the overall speedup
in SEMINAIVE. This result is very common for graphs that
require many iterations while the computation in each iteration
is very fast. However, for graphs like gnp-0.001 and gnp-
0.01 that SEMINAIVE terminates in a few iterations (8 and 4,
respectively) while the computation in each iteration takes a
long time, the execution time is still dominated by computing
time, and the speedup curve of SEMINAIVE is similar to that
of SMART. As we will see next, the speedup of this kind of
evaluation is bound by the memory bandwidth.

Speedup of SMART. Fig. 9 shows the execution time break-
down of SMART on grid-150. Computing time in SMART
scales much better than that in SEMINAIVE, while control time
accounts for a smaller percentage in SMART. Thus, SMART
scales better than SEMINAIVE on grid-150. However, the
speedup of computing time is only 8 when 64 threads are
used. We further investigated the time spent on each relational
algebra operators in computing time. There are four operators
in each iteration, namely join, union, join and set difference.
Fig. 10 shows the total time spent on each operator. The time
spent on the union operator dominates the computing time. A
further breakdown of the time spent on the union operator
reveals that the overall speedup is bound by the speedup
of partition phase. A union operator works in two phases
— partition phase and union phase. Both input relations are
partitioned into smaller relations in the partition phase. Each
thread computes the union of two partitioned relations in the

union phase. Fig. 11 shows the maximal speedup of each phase
in each iteration. The speedup of union phase is twice as much
as that of partition phase from iteration 5 to 8, while the time
spent on these 4 iterations accounts for 97% of the execution
time on the union operator. The speedup of partition phase
is limited by the memory bandwidth [21]. Thus, the overall
speedup of SMART is bound by the memory bandwidth.
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Fig. 11. Maximal speedup of partition phase and union phase in the union
operator of SMART on grid-150. A label “partition i” (“union i”) on the
x-axis shows the maximal speedup of partition (union) phase in i-th iteration.

Speedup of SSC algorithms. An SSC algorithm is expected to
achieve linear speedup since the computation in one thread
does not interfere with the computation in other threads. How-
ever, its speedup stays below eight as the number of threads
increases from 8 to 64 when the NUMA aware optimization
described in Section III-C is not enabled4. The main reason
for this behavior is due to the limited memory bandwidth.
The NUMA region that the shared relation is resident on is
the hotspot since all threads request data from it concurrently.
When the memory is saturated (i.e., it cannot handle more
memory load requests in a time unit), increasing the number
of threads does not increase the speedup.

The memory saturation problem is alleviated by the NUMA
aware optimization. This optimization 1) distributes the mem-
ory load requests to each NUMA region and 2) ensures each
thread always accesses data on the local memory. The SSC
algorithms exhibit linear speedup as shown in Fig. 7. But this
optimization does not change the fact that the SSC algorithms
are memory bandwidth bound. The evaluation of the all-pairs
shortest path query described in Section 5 of [20] accesses
more data than that of the TC query does. None of the SSC
algorithms scale linearly on the graph that does not fit in the
L3 cache as a result of memory saturation.

4We are referring to the case that the graph does not fit in the L3 cache,
otherwise the algorithms scale better.

8



UCLA Computer Science Department Technical Report #140014

  107
  108
  109

  1010
  1011
  1012
  1013

tree-11 tree-17 grid-150 sf-100K gnp-0.001 gnp-0.01 gnp-0.1 gnp-0.5 grid-250 patent wiki road stanford

E
xe

cu
tio

n 
tim

e
(C

P
U

 c
yc

le
s)

2

16

16 32

64

64

2

32 32 64

8

16

64

64 64 64

64

64 64 64

64

64

64

64

64

32 64 32 64

64

64

64

64

64

64

64

8

16

32 64 32 64

64

64

64

64 64 64 64

Seminaive Smart SSC1 SSC2 SSC12

Fig. 12. Execution time for optimal number of threads.

2) Minimal Execution Time: Finally, we compare all the
algorithms in terms of their execution time using multiple
threads. The execution time does not always decrease as the
number of threads increases. The optimal number of threads
is the number of threads such that the execution time of an
algorithm on a graph is minimal among all other numbers.
Fig. 12 shows the execution time of each algorithm using the
optimal number of threads.

SMART is faster than SEMINAIVE on all four graphs that
both algorithms are applicable as a result of better speedup,
which is consistent with the conclusion of [1] that SMART has
advantages over SEMINAIVE on TC computation. However,
neither algorithms is the fastest on any test graph. The SSC
algorithms achieve the minimal execution time on all the test
graphs, while only SSC12 consistently performs well.

Fig. 12 also shows the minimal execution time of the SSC
algorithms on grid-250 and four real-life graphs. These graphs
have much larger TCs such that only the SSC algorithms are
applicable. SSC1 is faster than SSC2 on patent and road
since both graphs have tree structures. SSC2 is faster than
SSC1 on the remaining three graphs. Nevertheless, SSC12 is
the only algorithm that performs well on all five graphs.

Besides the speed, SSC12 is more memory efficient than
SEMINAIVE and SMART. These two advantages make SSC12
an ideal choice for main memory parallel TC evaluation.

V. RELATED WORK

The TC of a binary relation is a much-studied recursive
query. The earliest work dates back to 1962, when Warshall
[10] proposed the Floyd-Warshall algorithm that computes the
TC of an n-vertex graph in Θ(n3) time. One line of research
tries to speed up the computation by exploiting the special
property of the problem itself. Warren and Henry [11] pro-
posed a variant that works faster for sparse graphs in a paging
environment. Agrawal and Jagadish [12] studied I/O efficient
variants, the Blocked Warshall algorithm and the Blocked
Warren algorithm, under the assumption that the memory size
is small compared to the result relation size. The I/O cost is
further reduced in algorithms based on depth-first search and
a marking optimization [13], [14]. [16] and [17] compared I/O
costs of TC algorithms using different implementations. Our
study compares the serial execution performance of several TC
algorithms. But we focus on main memory evaluation, and our
implementations use cache conscious algorithms.

Our implementations of parallel TC algorithms are inspired
by previous studies on parallel TC computation [6]–[9]. The
idea of implementing SEMINAIVE and SMART using hash-

based parallel relational algebra operators is attributed to
Valduriez and Khoshafian [6]. Agrawal and Jagadish [7] and
Wolfson et al. [8] proposed to partition the computation by
the source vertices so that each core applies SEMINAIVE on
a set of source vertices. The idea is similar to that of SSC1
except SSC1 applies SEMINAIVE on one source vertex one at
the time. Cacace et al. [9] provided a survey on parallel TC
algorithms. Previous studies use theoretical models to analyse
the performance of algorithms, whereas our study focuses on
experimental evaluation. In another experimental study [20]
that includes the parallel Floyd algorithm [7], we showed
that the Floyd algorithm achieves competitive performance for
small dense graphs. But its memory requirement is impractical
for large sparse graphs. Moreover, it is outperformed by
SSC12 in the experiments.

VI. CONCLUSION AND FURTHER WORK

In this paper, we compared several recursive query evalua-
tion algorithms on a modern multicore machine. A clear con-
clusion emerging from these experiments is that, for multicore
machines, the simple SSC algorithms perform better than other
algorithms in terms of speed and significantly better in terms
of memory utilization. We thus introduced an algorithm, called
SSC12, which combines the strengths of SSC1 and SSC2,
and thus provides the obvious target algorithm for the compiler
of our Datalog system DeAL [28] on multicore machines.
However, our experiments also confirmed that performance
of SSC12 (and other algorithms) on multicore machines
will always be limited by the memory bandwidth bottleneck.
Higher level of scalability through parallelism are however
achievable on multi-node clusters. For multi-node clusters, the
SMART algorithm has been shown to be optimal [1] — a
conclusion that is confirmed by our recent investigation. The
objective of this ongoing investigation is understanding the
cost-performance tradeoffs on different multicore and multi-
node systems for TC-like applications. From this study we
seek to derive simple criteria for deciding which system, out
of the many available on the cloud, can be most cost-effective
for the application at hand. The ability of our Datalog compiler
[28] to retarget recursive queries for different platforms is
based on its ability to transform linear recursive rules into non-
linear ones, which was described through simple examples in
Section II. Many important algorithms that use TC-like rules
in conjunction with monotonic aggregates [19] are amenable
to such platform-driven porting and optimization.
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