A Simple Treatment of
Property Preservation via Simulation

Ching-Tsun Chou

(chou@cs.ucla.edu)

Computer Science Department
University of California at Los Angeles

Los Angeles, CA 90024, U.S.A.

(Last revised: 21 March 1995)

Abstract

Let s; and sy be two reactive systems related by simulation. For
what kind of properties ® can one infer s; = & (s, satisfies ®) from
sa |E @, or vice versa? In this paper we present a simple treatment of
this problem, which we call property preservation via simulation, that
unifies and generalizes several results in the literature. Our treatment
is based on two ideas. First, we introduce an infinitary logic £ that
is so expressive that preservation results for its fragments generalize
existing preservation results for linear-time, branching-time, modal,
and fixpoint logics. Thus £ provides a unifying framework within which
existing results can be derived and compared. Second, we formulate
a set of reduction lemmas, one for each construct of £, that allows
the preservation proof of a compound property to be reduced to the
preservation proofs of its constituent properties. Each reduction lemma
is easy to prove by itself, but they together with the infinitary logic
yvield nontrivial results. The reduction lemmas show clearly where
property preservation via simulation works and where it does not.

© Ching-Tsun Chou 21 March 1995 1

1 Introduction

A powerful technique for relating and reasoning about reactive systems is
that of simulation [16]. Roughly speaking, a relation R between reactive
systems is a simulation iff (if and only if) whenever s; and s are related by
R, if 51 can perform an action a and become s/, then sy can also perform
a and become s} such that s§ and s} are still related by R. The power of
the simulation technique stems from the fact that if two reactive systems
are related by simulation, then one can infer certain properties of one from
those of the other. So a natural and important problem to ask is:

Let s1 and sy be two reactive systems related by simulation. For
what kind of properties ® can one infer s; = ® (s1 satisfies ®)
from sy |= @, or vice versa?

This problem, which we call property preservation via simulation, has been
treated in the literature for linear-time logics [4], branching-time logics [6],
modal logics [12], and fixpoint logics [2]. Those treatments, however, are ad
hoc and (sometimes) unnecessarily complicated. In this paper we present a
simple treatment that nonetheless unifies and generalizes the results cited
above.

Our treatment is based on two ideas. First, we introduce an infinitary
logic £ that is so expressive that preservation results for its fragments gen-
eralize existing preservation results for linear-time, branching-time, modal,
and fixpoint logics. Thus £ provides a unifying framework within which
existing results can be derived and compared. Second, we formulate a set of
reduction lemmas, one for each construct of £, that allows the preservation
proof of a compound property to be reduced to the preservation proofs of its
constituent properties. Each reduction lemma is easy to prove by itself, but
they together with the infinitary logic yield nontrivial results. The reduction
lemmas show clearly where property preservation via simulation works and
where it does not.

Some computer scientists may feel uneasy about infinitary logics, for
their formulas cannot be manipulated by a computer. But using infinitary
logics in computer science is nothing new. For example, Hennessy-Milner
Logic (as described in [17]) is an infinitary logic, and infinitary logics have
been used extensively in finite model theory (see, e.g., [13]).

The rest of this paper is organized as follows. Section 2 defines the
syntax and semantics of £ and some of its fragments that will be used later.
Section 3 proves the reduction lemmas and the preservation results for the

© Ching-Tsun Chou 21 March 1995 2

fragments of £. Section 4 applies the preservation results for the fragments
of L to linear-time, branching-time, modal, and fixpoint logics found in the
literature. Section 5 is the conclusion.

The reader is referred to [18] for the set theory used in this paper, in
particular transfinite recursion and induction, ordinals, and fixpoints. The

symbol “2” means “equals by definition”.

2 Infinitary Logic £ and Its Fragments

The infinitary logic £ is a branching-time logic whose formulas are built up
from primitive state and path formulas using negation, arbitrary conjunction
and disjunction, the path quantifiers ¥ and 3, and the nexzt operator (). For
ease in stating and proving preservation results, the formulas of £ are given
in positive normal form, i.e., negation appears only on primitive formulas.

Definition 1 [Syntax of []

Let P be a set of primitive formulas which is partitioned into a set P*
of primitive state formulas and a set P of primitive path formulas. The
infinitary logic £ consists of a class’ £ of state formulas and a class £
of path formulas, which are inductively defined as the smallest classes of
expressions such that:

PeP® = PeLl” and —P€L”
{®;|i eI} C LY = Aier®; € LY and Vig®; € £F
Vel = Y(U)el® and (V) e L™
QePl = Qe and Qe M
(U, lieI}y C LY = Aier¥; e £ and vier¥; € £
Vel = Quell
delL” = deLl!

where [is an arbitrary index set. The above inductive definition can be
summarized by the following “grammar”:

® = PP | Ner®i | Vier®: | V(V) | 3(¥)
U = Q| -Q | Ner¥i | Vier¥: | QY |

1Since the conjunction and disjunction of arbitrary sets of formulas are allowed, L=

and £ are too “big” to be sets and must be proper classes.

© Ching-Tsun Chou 21 March 1995 3

Finitary conjunctions of the form A;cq 1 ®; (where n > 2) will often be
written in infix form as ®1A --- A®,,; similar remarks apply to disjunctions
and path formulas. Note that we can define truth tt as A;cp®; and falsity
ff as Vg ®;.

Formulas of £ are interpreted on a labeled transition system, where a
state formula is true or false for a state and a path formula is true or false
for an (infinite) computation path, as follows.

Definition 2 [Labeled Transition Systems]

A labeled transition system (LTS) is a triple T = (5, A, —), where S is a
set of states, A is a set of actions, and — C Sx AX S is a labeled transition
relation. For any s,s' € S and a € A, (s,a,s’) € — will be abbreviated
as s —— &' A path in T is an infinite sequence of alternating states and
actions, @ = sgapsiaisy -+, such that vn > 0 : s, O, Spt1- For any
n > 0, the n-th state, action, and suffiz of 7 are s,(7) 2 s, a, () 2 a,,
and f,(7) 2 SpQpSp41n+1Sn+2 - - -, Tespectively. The set of paths in T is
denoted by Ilr; for any s € 5, the set of paths in T starting from s is denoted
by Il7(s). The subscripts of Il and Il7(-) will be dropped whenever they
are clear from context.

Definition 3 [Semantics of £]

A model of L is a pair M = (T,V), where T' = (5, A4,—) is a LTS and
V = (VE V) ¢ (P¥ = 2%)x (P —24) is a pair of valuations of primitive
formulas of £. The satisfaction of a state formula ® € £ by a state s € §
(denoted s |=3; ®) and that of a path formula ¥ € £ by a path 7 € Tl
(denoted 7 |=Y; ¥) are defined recursively as follows:

© Ching-Tsun Chou 21 March 1995 4

sy P & seVE(P)

sy P & sgVEP)

s|:]2\4 Nier®; & ViEI:5|:]EW D,
slEY Vier®: & Jiel:sky &
sEy V) & Vrellp(s):n YL ¥
sEy V) & Arcllp(s):r =i v
" ED & ao(r) e VI(Q)
PEL Qe ao(m) ¢ VI(Q)

7r|:?4 Nier¥; & ViEI:ﬂ|:?4 v,
TEL Vier¥, & Jiel:n YL ¥,
TEN OV e fi(m) LY

rEL e e s(n)Eh o

The subscripts and superscripts of |:]EW and |:?4 will be dropped whenever
they are clear from context.

A logic F is a fragment of another logic G iff every formula of F is a
formula of G. Usually, F is obtained from G by banning the use of certain
constructs of G. Some useful fragments of £ are defined below.

Definition 4 [Fragments of []
1. VL is the fragment of £ obtained by banning the use of 3.
2. 3L is the fragment of £ obtained by banning the use of V.
3. £L is the fragment of £ obtained by banning the use of both V and 3.

4. Lo, VL, AL, and €L, are the fragments of, respectively, £, VL,
AL, and £L obtained by banning the use of —.

Fragments ££ and €L, are linear-time logics, in that their path formulas
may contain state formulas but not vice versa; the other fragments are
branching-time logics, in that their path and state formulas may contain
each other. Note that the set P of primitive formulas is also a fragment of
L. For each fragment F of £, F™ (respectively,]—"H) denote the set of state
(path) formulas of F; note that both 7* and F'! are also fragments of L.

© Ching-Tsun Chou 21 March 1995 5

3 Property Preservation via Simulation

Let Ty = (51,A,—1) and Ty = (52,4, —3) be two LTS’s which share a
common set A of actions, My = (11, V1) and My = (T3, V3) be two models
of £ based on T and T5 respectively, and R C 51X 53 be a relation from the
states of T} to the states of T5. The subscripts of —1 and —» will be dropped
whenever they are clear from context. The inverse of R, R™' C S, x5, is
defined by: (s2,81) € R™ & (s1,82) € R.

A state formula @ is (bi-)preserved by R iff whenever s and s are related
by R, if s satisfies ® then sy satisfies ® (and vice versa). Preservation of
path formulas is similarly defined, after R is suitably “lifted” to a relation
OR between paths in T} and pathsin T5. A fragment F of £ is (bi-)preserved
by R iff every formula of F is (bi-)preserved by R.

Definition 5 [Preservation and Bi-preservation]
For a state formula ® € £, R preserves ® iff:

V(s1,82) ER: 512 = s @
and R bi-preserves @ iff:
V(s1,82) ER: s1 2P & s @
For a path formula ¥ € £, OR preserves W iff:
V(m,m2) €EOR: mEVY = mEV¥
and OR bi-preserves VU iff:
V(m,m2) €EOR: mEVY & mEVY
where OR C Il7, xIl7, is defined by:
(m1,m2) EAR & Y >0:(8,(71),8.(m2)) € RA (an(m1) = an(m2))

For a fragment F of £, R (bi-)preserves F iff R (bi-)preserves each state
formula ® of F and OR (bi-)preserves each path formula ¥ of F.

Bi-preservation can be expressed in terms of preservation, as follows.
Lemma 6
(1) R bi-preserves ® < R preserves ® A R7! preserves ®

(2) OR bi-preserves ¥ <« OR preserves ¥ A OR™! preserves ¥
(3) R bi-preserves F < R preserves F A R7' preserves F

© Ching-Tsun Chou

21 March 1995 6

The following proposition provides simple sufficient conditions for the

preservation and bi-preservation of primitive path formulas.

Proposition 7

(4)
(5)

(VQ e P VI(Q)CVi(Q)) = R preserves P!
(VvQ e Pl vI@Q)=v]'(Q)) = R bi-preserves P

The following reduction lemmas take care of all constructs of £ except

the path quantifiers V and 3.

Lemma 8 [Reduction Lemmas—Part 1a]

(6) R7! preserves P =
(7) (Vi€ l: R preserves ;)
(8) (Vi€ l: R preserves ;)
(9) OR™ preserves Q
(10) (Vi€ I:0OR preserves ¥,)
(11) (Vi€ I:0OR preserves ¥,)
(12) OR preserves W
(13) R preserves ¢

Proof:

TR TR TR}

4

R preserves =P

R preserves NA;c1®;
R preserves V;c1®;
OR preserves —()
OR preserves A;er¥;
OR preserves V;c1¥;
OR preserves QW
OR preserves ¢

We prove only (12); the other cases are all straightforward. By

definition, to show that OR preserves QW, it suffices to show that:
V(r,m) €EOR: (fi(m) EY = fi(m)EY)
It is easy to see that (7y,72) € OR = (fi(m1), f1(72)) € OR, from which

the above goal follows using the assumption that OR preserves V.

Lemma 9 [Reduction Lemmas—Part 1b]

(14) R bi-preserves P
(15) (Vi€ I: R bi-preserves ®,;)
(16) (Vi€ I: R bi-preserves ;)
(17) OR bi-preserves ¢
(18) (Vi€ I:0OR bi-preserves ¥,)
(19) (Vi€ I:0OR bi-preserves ¥,)
(20) OR bi-preserves ¥
(21) R bi-preserves @

4

R bi-preserves = P

R bi-preserves A;cr®;
R bi-preserves V,;cr®;
OR bi-preserves —()
OR bi-preserves A;er¥;
OR bi-preserves V;cr¥;
OR bi-preserves QW
OR bi-preserves ®

T TR

© Ching-Tsun Chou 21 March 1995 7

Proof: By Lemmas 6 and 8. i

Note that, up to this point, no assumption whatsoever has been made
of R, which can be any relation from 57 to S3. Only the reduction lemmas
for the path quantifiers V and 3 need R to be a simulation.

Definition 10 [Simulation and Bisimulation]
R is a simulation from T7 to Ty iff:

V(s1,82)€ER: Yae A: Vs :51—a—>8’1 =
Is) sy —sh A (8),h) €R

R is a bisimulation between T7 and 15 iff both R is a simulation from T} to
Ty and R7' is a simulation from 75 to T}.

Lemma 11 [Reduction Lemmas—Part 2a]

(22) R is asimulation from T3 to 1% =

OR preserves ¥ = R preserves (V)
(23) R7!is a simulation from T3 to Ty =

OR preserves ¥ = R preserves V()

Proof: We prove only (22); the proof of (23) is similar. By definition, to
show that R preserves 3(V), it suffices to show that:

V(si,8)€R: (Imell(sy) :mEY) = (Imell(sy) :mE V)

An induction argument shows that the assumption that R is a simulation
from T; to T3 implies that:

V(s1,8)€ R: Vmy € Il(sy): 3wy € M(sg): (m,72) € OR

from which the above goal follows easily using the assumption that OR
preserves V. |

Lemma 12 [Reduction Lemmas—Part 2b]

(24) R is a bisimulation between Ty and Ty =

OR bi-preserves ¥ = R bi-preserves 3(V)
(25) R is a bisimulation between Ty and Ty =

OR bi-preserves ¥ = R bi-preserves V()

© Ching-Tsun Chou 21 March 1995 8

Proof: By Lemmas 6 and 11. i

Finally, we are ready to state and prove preservation theorems for the
fragments of £ introduced in Definition 4.

Theorem 13 [Preservation Theorems for []
(26) R is a bisimulation between Ty and 75 =

R bi-preserves P = R bi-preserves L
(27) R is a bisimulation between Ty and Ty =

R preserves P = R preserves L
(28) R is asimulation from T3 to 1% =

R bi-preserves P = R preserves 3L
(29) R is asimulation from T3 to 1% =

R preserves P = R preserves 4L
(30) R7!is a simulation from Ty to Ty =

R bi-preserves P = R preserves VL
(31) R7!is a simulation from T to 77 =

R preserves P = R preserves VL
(32) R bi-preserves P = R bi-preserves £L
(33) R preserves P = R preserves £L

Proof: By structural induction on formulas and the reduction lemmas. §

4 Applications

4.1 Linear-Time Logics

Chou [4] proved reduction lemmas for the linear-time temporal operators O
(“always”) and < (“sometime”) defined by:

OV & Va>0:f.(n)EV
TEOV & In>0:f (r)FV¥
It is easy to see that O and < can be expressed in £ as follows:
Ov = A,oQ"Y¥
o\ Vn;O oty

So Theorem 13 immediately implies the reduction lemmas in [4].

© Ching-Tsun Chou 21 March 1995 9

4.2 Branching-Time Logics

CTL* [5] is a finitary branching-time logic whose syntax in positive normal
form is specified by the following grammar [6]:

O u= PP |tt |]S ADy | DV I, | V(V)|I(Y)
v QUL AW, | UV, QU | U, U, | ¥, VI,

where ® and ®;’s (respectively, ¥ and V¥;’s) denote state (path) formulas,
P denotes a primitive state formula, —, tt, ff, A, Vv, ¥, 3, and (O have the
same meanings as in £, and U (“until”) and V (“releases”) are defined by:

TEVUY, & dn>0:f (n)EVYs AVm<n: f (7)F ¥
TEWVY, & Vn>0:f (m)EVY,VIm<n:f, (1)F ¥

Let P+ denote the set of primitive state formulas of CTL*; CTL* has no
primitive path formula.

CTL* can be viewed as a fragment of £, since U and V can be expressed
in £ as follows:

Vi U¥, = Vo O"Va AN, O™y
Ui V¥, = Ao O"¥Y2 V Ve, O

where (OF denotes the k-fold iteration of OO: Q¥ £ ¥ and OF'v¥ 2
O(Ok\IJ) for all k& > 0. Consequently, the preservation results for the
fragments of £ (Theorem 13) immediately imply the following preservation
results for the fragments of CTL*, where VCTL*, 3CTL*, £CTL*, ... are
defined in terms of CTL” in the same way as VL, 3L, £L, ... are defined in
terms of £ (Definition 4).

Theorem 14 [Preservation Theorems for CTL"]

[WN]
=~

R is a bisimulation A R bi-preserves Pgrr,+ = R bi-preserves CTL*
35
36

R is a bisimulation A R preserves Porr» = R preserves CTLY
R is a simulation A R bi-preserves Porr,+ = R preserves 3CTL*

o
3
N N N N N e N

R is a simulation A R preserves Poyp+ = R preserves 3CTLY
38
39
40
41

R7'is a simulation A R bi-preserves Porr+ = R preserves VCTL*
R7'is a simulation A R preserves Porr+ = R preserves VCTLY
R bi-preserves Porpr,» = R bi-preserves £CTL"

(
(
(
(
(
(
(
(

R preserves Porr» = R preserves £CTLY

© Ching-Tsun Chou 21 March 1995 10

Clarke, Grumberg, and Long [6] proved (34) and (38) in the special case that
R is induced by an abstraction mapping h: R(s1,s2) & (s1 = h(sz)). It
should be pointed out that, though [6] does not speak directly of simulation
and bisimulation, the notions of approximation and exact approximation of
transition systems in [6] imply the former notions.

4.3 Modal Logics
The Generalized Hennessy-Milner Logic (HML*) is an infinitary modal logic

whose syntax in positive normal form is specified by the following grammar:
® = P | - P | Nier®; | Vier®; | [a]<I> | <a><I>
where ® and ®,’s denote state formulas, P denotes a primitive state formula,
=, Nier, and V;ey have the same meanings as in £, and, for each action a,
[a] (“necessity”) and (a) (“possibility”) are defined by:
skEa® o Vi:is-Ld = J 0
sE(a)® o 3¢ :s-Ld Ao
Note that HML* has no path formulas. Let Pgyr,* denote the set of primitive
formulas of HML*. The original Hennessy-Milner Logic [12] does not allow

for primitive formulas; we have added them to obtain more general results
which will be used in the next subsection.

Lemma 15 [Reduction Lemmas for Modal Operators]

(42) R is asimulation from T3 to 1y =
R preserves @ = R preserves (a) ¢
(43) R7'is a simulation from T3 to T} =
R preserves @ = R preserves [a| ®
(44) R is a bisimulation between Ty and 75 =
R bi-preserves ® = R bi-preserves (a) ®
(45) R is a bisimulation between Ty and 75 =
R bi-preserves & = R bi-preserves [a] ®
Proof: Similar to (in fact simpler than) the proofs of Lemmas 11 and 12.

Alternatively, this lemma can be derived as a corollary of Lemmas 11 and
12 by noting that [a] and (a) can be expressed in £ as follows:

(A& = Y(=Q.VOa)
(@)@ = F(Q.ANOP)

(© Ching-Tsun Chou 21 March 1995 11

where (), is a primitive path formula with the fixed interpretation that
VI(Q,) = {a}, assuming that the underlying labeled transition relation —

is total in the sense that Vs € §:3a,s : s 2. ¢, The last assumption can
be satisfied by adding a new, dummy action ¢ and extending — such that

Vs,s' € 5: s——s < (s=s)in the underlying LTS. i

In the following, [[JHML* (respectively, (-)HML*) is the fragment of
HML” obtained by banning the use of the (a) ([a]) operators, and HML? ,
[[JHML , and (-)HML? are the fragments of, respectively, HML", [-]JHML",
and (-)HML* obtained by banning the use of —.

Theorem 16 [Preservation Theorems for HML"]

46) R is a bisimulation A R bi-preserves Py, = R bi-preserves HML*
R is a bisimulation A R preserves Py = R preserves HMLY

R is a simulation A R bi-preserves Py = R preserves (-)HML*

)
)
49) R is a simulation A R preserves Pyyp+ = R preserves (-)HMLY
) R7!is a simulation A R bi-preserves Pyypc = R preserves [-JHML*
)

R is a simulation A R preserves Py = R preserves [-JHMLY

Proof: Same as the proof of Theorem 13, except that Lemmas 11 and 12
are replaced by Lemma 15. i

Hennessy and Milner [12] proved (46) and (48) for the original Hennessy-
Milner Logic (i.e., for the special case that Py = 0).

4.4 Fixpoint Logics

The Modal p-Calculus (MpC) [14] is a finitary modal logic whose syntax in
positive normal form is specified by the following grammar:

¢ = P|P|tt|f|P AP | PV Dy |[a] D] (a)®|
X|pX:®|vX:®

where ® and ®,’s denote state formulas, P denotes a primitive state formula,
=, tt, ff, A, V, [a], and (@) have the same meanings as in HML*, X denotes
a (propositional) variable, and p and v are the least and greatest fizpoint
operators, both of which are variable binders (like quantifiers). Let Py,c
denote the set of primitive formulas and variables of MuC; note that free
variables in a MuC formula can be viewed as primitive formulas.

(© Ching-Tsun Chou 21 March 1995 12

MpC can be viewed as a fragment of HML*, since the least and greatest
fixpoints can be expressed in HML* as follows [14]:

pX @ = o
vX: ¢ = Of

where A is a “big enough” ordinal (more about this later) and we define
recursively for each ordinal a:

O = Vica®[0f/X]

Bl 2 Np<a®[®5/X]
where ®[0/X] denotes the formula obtained by substituting © for all free
occurrences of X in ®. How “big” A should be depends on the LTS’s in-
volved: if x is the cardinality of the largest of the state sets of those LTS’s,
then letting A = 27 is certainly sufficient. Consequently, preservation results
for the fragments of HML™ (Theorem 16) immediately imply the following
preservation results for the fragments of MuC, where [-|MuC, (YMuC, ...

are defined in terms of MuC in the same way as [-]JHML*, (-)HML*, ... are
defined in terms of HML*.

Theorem 17 [Preservation Theorems for MuC]

(R is a bisimulation A R bi-preserves Pyuc = R bi-preserves MuC
(R is a bisimulation A R preserves Pyuc = R preserves MuC,

(R is a simulation A R bi-preserves Pyiuc = R preserves (-)MuC

(R is a simulation A R preserves Py, = R preserves (-)MpuC,

(R7 is a simulation A R bi-preserves Py, = R preserves [-|[MuC
(R7!is a simulation A R preserves Pyuc = R preserves [-[MuC,

Bensalem, Bouajjani, Loiseaux, and Sifakis [2] proved essentially the same
theorem using an algebraic formulation in terms of Galois connections. A

Galois connection [19] between two posets P and () is a pair of functions,
¢: P — @ and ¢ :Q — P, such that for any p € P and ¢ € Q:

(58) o(p)<oq & p<p(q)

It can be shown [7]? that for any Galois connection (¢,1) between two
power sets 2% and 2 (ordered by set inclusion), there must exist a relation

?Note that the definition of Galois connections in [7] has the order <¢ reversed.

© Ching-Tsun Chou 21 March 1995 13

R C X xY such that for any p C X and ¢ C Y:

Ppp) = {yeY|IzeX:(v,y)€ RNz € p}
¥(q) {zeX|VyeY : :(s,y) e R=>ye€Eq}

and either side of (58) is equivalent to:

(59) V(z,y) e R:xep=>y€yq

In other words, any Galois connection between two power sets (which is
the only kind of Galois connections used in [2]) is induced by a relation
between the base sets of the power sets. Essentially, we have used (59) as
the basis of our definition of property preservation (cf. Definition 5). We feel
that dispensing with Galois connections greatly simplified our treatment;
the reader is invited to compare [2] with this paper. Also, [2] proves the
preservation results only for finitely branching transition systems®, while
our proofs work for arbitrary labeled transition systems.

5 Conclusion

The power of our treatment comes mainly from the use of the infinitary
logic £, which is both simple enough to allow straightforward and modular
preservation proofs (viz., the reduction lemmas) and expressive enough to
support the unification and generalization of several existing preservation re-
sults. Indeed, all future-tense propositional logics surveyed in [8, 20] appear
to be fragments of £, so our main result (Theorem 13) is very general.
This work can be extended in at least two directions. First, in order
to deal properly with reactive systems that hide internal details from ex-
ternal environments, external and internal actions need to be distinguished.
Second, in order to support modular development of reactive systems, the
interaction of property preservation and program composition needs to be
investigated. (It should pointed out that works in this direction already
exist; see [10, 11]). We hope to address these two issues in future work.

®It is stated in [2] (p. 266) that:

In the sequel we consider only finite branching transition systems, i.e., tran-
sition systems where any state has a finite number of successors. This condi-
tion guaranties that the formulas can be interpreted as continuous functions
on sets of states.

This assertion is actually false; see Example 4.3.2 of [20] (p. 533). Hence the proofs of
Theorems 14 and 15 in [2] are problematic.

(© Ching-Tsun Chou 21 March 1995 14

Acknowledgements.

The author is grateful to Professor Yiannis Moschovakis for enlightening
discussions about infinitary logics, fixpoints, and ordinals.

References

[1] S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum (Ed.), Handbook of
Logic in Computer Science, Vol. 2, Oxford University Press, 1992.

[2] S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis, “Property Pre-
serving Simulations”, in [3], pp. 260-273.

[3] G.v.Bochmann and D.K. Probst (Ed.), CAV’92: Computer-Aided Veri-
fication, Jth International Workshop, LNCS 663, Springer- Verlag, 1992.

[4] Ching-Tsun Chou, “Mechanical Verification of Distributed Algorithms
in Higher-Order Logic”, to appear in The Computer Journal in 1995.

[5] E.M. Clarke, E.A. Emerson, and A.P. Sistla, “Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications”,
ACM Trans. on Programming Languages and Systems, Vol. 8, No. 2,
pp. 244-263, Apr. 1986.

[6] E.M. Clarke, O. Grumberg, and D.E. Long, “Model Checking and
Abstraction”, ACM Trans. on Programming Languages and Systems,
Vol. 16, No. 5, pp. 1512-1542, Sep. 1994.

[7] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order,
Cambridge University Press, 1990.

[8] E.A. Emerson, “Temporal and Modal Logic”, Chapter 16 of [15],
pp- 995-1072.

[9] M.-C. Gaudel and J.-P. Jouannaud (Ed.), TAPSOFT’93: Theory and
Practice of Software Development, Jth Int. Joint Conf. CAAP/FASE,
LNCS 668, Springer-Verlag, 1993.

[10] S. Grafand C. Loiseaux, “Property Preserving Abstractions under Par-
allel Composition”, in [9], pp. 644—657.

© Ching-Tsun Chou 21 March 1995 15

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

O. Grumberg, and D.E. Long, “Model Checking and Modular Verifica-
tion”, ACM Trans. on Programming Languages and Systems, Vol. 16,
No. 3, pp. 843-871, May. 1994.

M.C. Hennessy and R. Milner, “Algebraic Laws for Nondeterminism
and Concurrency”, Journal of ACM, Vol. 32, No. 1, pp. 137-161, 1985.

Ph.G. Kolaitis and M.Y. Vardi, “Infinitary Logics and 0-1 Laws”, In-
formation and Computation, Vol. 98, pp. 258-294, 1992.

Dexter Kozen, “Results on the Propositional pu-Calculus”, Theoretical
Computer Science, Vol. 27, pp. 333-354, 1983.

J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science,
Vol. B: Formal Models and Semantics, The MIT Press/Elsevier, 1990.

Robin Milner, “An Algebraic Definition of Simulation between Pro-
grams”, Proc. of the 2nd Int. Joint Conf. on Artificial Intelligence,
pp. 481-489, 1971.

Robin Milner, Communication and Concurrency, Prentice Hall, 1989.
Yiannis N. Moschovakis, Notes on Set Theory, Springer-Verlag, 1994.

Oystein Ore, “Galois Connexions”, Trans. Amer. Math. Soc., Vol. 55,
pp- 493-513, 1944.

C. Stirling, “Modal and Temporal Logics”, in [1], pp. 477-563.

